
Azure Kubernetes Service (AKS) Architecture Documentation

Overview

This document provides a detailed explanation of the Azure Kubernetes Service (AKS) architecture 
depicted in the diagram. The architecture represents a modern cloud-native application deployment 
using AKS with various supporting Azure services for CI/CD, security, monitoring, and data storage.

Architecture Components

Core Infrastructure

 

Component Description

Azure Kubernetes Service (AKS) Managed Kubernetes service that simplifies container orchestration

Kubernetes Cluster Orchestrates containerized applications and manages their lifecycle

Virtual Network Isolated network environment containing all AKS components

Client Access Path

 

Component Description

Client Apps Frontend applications or services that connect to the system

Azure Load Balancer Distributes incoming traffic to maintain high availability

Deployment Pipeline

 

Component Description

Azure Pipelines CI/CD service for automating build and deployment workflows

Helm Package manager for Kubernetes that simplifies application deployment

Container Registry Stores and manages container images for deployment

Docker Push/Pull Commands to upload and download container images

AKS Namespaces

 

Namespace Purpose

Front-end Contains user-facing components including Ingress controller

Back-end Services Houses microservices and business logic components

Utility Services Holds supporting services like monitoring and search



Infrastructure Components

 

Component Description

Ingress Controller Manages external access to services, acting as API gateway

Pod Autoscaling Automatically adjusts the number of pods based on demand

Elasticsearch Search and analytics engine for logs and application data

Prometheus Monitoring and alerting system for collecting metrics

External Services

 

Service Purpose

External Data Stores External databases (SQL) and cloud storage solutions

Azure Active Directory Identity and access management service

Azure Monitor Performance monitoring, alerting, and diagnostics service

Azure Key Vault Secure storage for secrets, certificates, and encryption keys

Security

 

Component Description

RBAC (Role-Based Access Control) Kubernetes and Azure AD integration for access control

Azure Key Vault Securely stores and manages sensitive information

Virtual Network Network isolation for AKS resources

Data Flow

User Request Path

1. Client Applications:
Send requests to the Azure Load Balancer

2. Load Balancer:
Distributes traffic to the Ingress controller in the Front-end namespace

3. Ingress Controller:
Routes requests to appropriate back-end services based on URL paths and rules

4. Back-end Services:
Process requests, potentially calling other microservices

Connect to external data stores when needed



Scale automatically based on demand via Pod autoscaling

Deployment Flow

1. Development and Code Commits:
Developers push code to a repository connected to Azure Pipelines

2. CI/CD Pipeline:
Azure Pipelines triggers build process for committed code

Builds Docker images and pushes them to Container Registry

Uses Helm for packaging and deploying applications to AKS

3. Deployment to AKS:
Helm upgrades deploy new versions to the Kubernetes cluster

Docker images are pulled from Container Registry to AKS nodes

Security and Management Flow

1. Access Control:
Authentication and authorization via Azure Active Directory

RBAC for fine-grained access control within Kubernetes

2. Monitoring and Operations:
Azure Monitor collects metrics and logs from AKS

Prometheus gathers application-specific metrics

Dev/Ops teams access monitoring dashboards and administrative tools

Key Features and Benefits

High Availability and Scalability

Load Balancing: Azure Load Balancer distributes traffic evenly

Pod Autoscaling: Automatically adjusts resources based on demand

Multiple Back-end Services: Distributed architecture for resilience

Kubernetes Orchestration: Self-healing capabilities to maintain desired state

DevOps and CI/CD Integration

Azure Pipelines: Automated build and deployment workflows

Helm Integration: Standardized application packaging and deployment

Container Registry: Central repository for container images



Infrastructure as Code: Deployment templates for consistent environments

Security and Compliance

Azure Active Directory Integration: Enterprise-grade identity management

RBAC: Fine-grained access control at Kubernetes level

Key Vault: Secure secret management

Network Isolation: Virtual network segmentation

Monitoring and Observability

Azure Monitor: Platform-level monitoring and alerting

Prometheus: Application-specific metrics collection

Elasticsearch: Log aggregation and search capabilities

End-to-End Visibility: From infrastructure to application performance

Implementation Considerations

Namespace Organization

The architecture uses namespaces for logical separation of components:

1. Front-end Namespace:
Contains Ingress controller

Entry point for external traffic

API gateway functionality

2. Back-end Services Namespace:
Contains business logic microservices

Multiple independent services that can scale individually

Service-to-service communication

3. Utility Services Namespace:
Contains supporting services like Elasticsearch and Prometheus

Separated to allow different scaling and security policies

Deployment Strategy

The architecture supports:

1. Blue/Green Deployments: Using Helm for controlled rollouts



2. Canary Releases: Gradual traffic shifting to new versions

3. Rollbacks: Quick reversion to previous versions if issues are detected

Scaling Considerations

1. Horizontal Pod Autoscaling: Based on CPU, memory, or custom metrics

2. Cluster Autoscaling: AKS node pool scaling based on pod scheduling demands

3. Manual Scaling: For predictable load patterns or special circumstances

Security Best Practices

1. Network Policies: Limiting pod-to-pod communication

2. Service Principals: Least privilege access for AKS cluster operations

3. Secret Management: Using Azure Key Vault integration

4. Container Security: Scanning images for vulnerabilities

Operational Guide

Monitoring and Alerts

1. Key Metrics to Monitor:
Cluster health and node status

Pod resource utilization

Application response times

Error rates and exception counts

2. Alert Configuration:
Critical service availability

Resource thresholds (80% CPU, memory)

Error rate spikes

Deployment status changes

Disaster Recovery

1. Backup Strategies:
Persistent volume snapshots

Database backups for external stores

Configuration backups via Azure Pipelines

2. Recovery Procedures:



AKS cluster recreation from template

Data restoration from backups

Service redeployment via CI/CD pipeline

Cost Optimization

1. Resource Management:
Right-sizing node pools based on workload requirements

Leveraging spot instances for non-critical workloads

Autoscaling to match demand patterns

2. Storage Optimization:
Appropriate storage class selection

Log retention policies

Image cleanup and lifecycle management

Conclusion

This Azure Kubernetes Service architecture provides a robust, secure, and scalable platform for deploying 
containerized applications. The design incorporates Azure best practices for container orchestration, 
CI/CD integration, security, and monitoring. The multi-namespace approach with clearly defined 
responsibilities ensures that the system remains maintainable and can evolve over time.

The use of managed services like AKS, Azure Monitor, and Azure Active Directory reduces operational 
overhead while improving reliability and security. The integrated CI/CD pipeline with Azure Pipelines and 
Helm enables rapid, consistent deployments supporting modern DevOps practices.

Overall, this architecture represents a production-ready solution suitable for mission-critical applications 
requiring high availability, security, and scalability in a containerized environment.


